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Streaming instability in quantum dusty plasmas
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Abstract. By using a quantum hydrodynamic (QHD) model, we derive a generalized dielectric constant
for an unmagnetized quantum dusty plasma composed of electrons, ions, and charged dust particulates.
Neglecting the electron inertial force in comparison with the electron pressure, and the force associated
with the electron correlations at a quantum scale, we discuss two classes of electrostatic instabilities that
are produced by streaming ions, and dust grains. The effects of the plasma streaming speeds, the thermal
speed of electrons, and the quantum parameter are examined on the growth rates. The relevance of our
investigation to dense astrophysical plasmas is discussed.

PACS. 52.35.-g Waves, oscillations, and instabilities in plasmas and intense beams – 52.30.-q Plasma
dynamics and flow – 52.35.Fp Electrostatic waves and oscillations (e.g., ion-acoustic waves) – 52.27.Lw
Dusty or complex plasmas; plasma crystals

1 Introduction

Dusty plasmas are composed of electrons, ions and
negatively charged dust particulates, have wide rang-
ing applications in space and in industry [1]. The dust
particulates are present in different environments of low-
temperature laboratory, space, and astrophysical plasmas,
i.e. in plasma processing, in plasma coating, in radio-
frequency discharges, in tokamak edges, in interstellar me-
dia, in interplanetary spaces, in interstellar or molecular
clouds, in cometary tails, and in the planetary ring sys-
tems. Dust particles are found to be charged either neg-
atively or positively, depending upon different charging
mechanisms, viz. the electron-ion sticking on the dust par-
ticulates surface from the background plasma, secondary
electrons emission, ultra-violet radiations, and thermionic
emission, etc. Dusty plasmas support a great variety of
wave modes [2–7]. The latter are found to be stable
in the equilibrium plasma and become unstable in non-
equilibrium plasmas due to an availability of free energy
sources [7,8]. The amplitudes of the collective modes grow
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or damp exponentially with respect to time, depending
on the signature of the imaginary wave frequency. If the
signature is positive, the waves will grow, and otherwise
damp. An upto-date knowledge of the dusty collective
modes and associated instabilities are contained in ref-
erence [9].

A noticeable interest has been developed for quantum
plasma from the beginning of this century. The main rea-
son of attraction is the new development in the manu-
facturing electronics and other disciplines of physics. For
instance, the major role of quantum effects in micro- and
nano-electronic devices [10], in dense astrophysical sys-
tems [11], and in laser produced plasmas [12] has been
recognized. The electron gas in the ordinary metals is
also a true quantum plasma. There are two well-known
models for describing the quantum mechanical effects in a
plasma. The Wigner and Hartree models are based upon
the Wigner-Poisson and Schrödinger-Poisson systems, re-
spectively, and present the statistical and hydrodynamic
behavior of the plasma particles. The traditional kinetic
and fluid models of the plasmas can be recovered by
neglecting the quantum effects. The quantum hydrody-
namic (QHD) model, which basically deals with the trans-
port of charge, momentum and energy in a plasma, has
been introduced for the semiconductor physics to over-
come the issues related to resonant tunnelling phenom-
ena, and the negative differential resistance [13]. The in-
vestigations [14–21] like drift waves, surface waves, plasma
echoes, Landau damping, Zakharov equations, Bernstein-
Greene-Kruskal equilibria, and the Debye screening, have
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been studied both analytically and numerically with quan-
tum corrections.

Haas et al. [22] have introduced a quantum multi-
stream model by using the non-linear Schrödinger-Poisson
system. They derived the dispersion relations for one-
and two-stream plasma instabilities and reported that the
two-stream instability is enhanced for small quantum ef-
fects in a plasma. Anderson et al. [23] did the same work
by employing the Wigner-Poisson system for the pur-
pose to study the statistical effects in the multistream
quantum plasma and showed that a Landau-like damping
suppresses the instabilities in one- and two-stream type.
The stability of small amplitude electrostatic waves has
been analyzed by Haas et al. [24] in a three-stream quan-
tum plasma. Lateron, the linear and non-linear proper-
ties of the ion acoustic waves have been investigated [25]
in a quantum plasma by using the one-dimensional QHD
model, and assuming inertialess electrons and mobile ions.
Quite recently, a three-dimensional QHD model has been
presented by Haas [26] for magnetized plasmas, and the
conditions for equilibrium have been established in an
ideal quantum magnetohydrodynamics.

It is well-known [27] that in quantum plasmas, the de
Broglie wavelength of the charge carriers is comparable to
the dimension of the plasma system. In such a situation,
the plasma behaves like a Fermi gas, and the quantum me-
chanical effects are expected to play a crucial role in the
behavior of charged plasma particles. For njλ

3
Bj ≥ 1, the

quantum effect becomes important, where the de Broglie
wavelength λBj is equal to or greater than the average
interparticle distance d = n

−1/3
j , and nj is the number

density of the jth species (j equals e for electrons, i for
ions, and d for dust particulates). On the other hand, for
an opposite condition, i.e. njλ

3
Bj < 1, the plasma particles

are assumed to behave classically. Recently, the disper-
sion properties of the linear [28] and non-linear [29] dust
acoustic waves have also been studied in an unmagnetized
quantum dusty plasma.

In this paper, we calculate a generalized dielectric
response function for an unmagnetized quantum dusty
plasma whose constituents are the electrons, ions and neg-
atively charged dust particulates. We treat the electrons
quantum mechanically and as inertialess, while the ions
and the dust particulates are assumed to behave classi-
cally. The instability due to the streaming of ions and dust
grains are presented, both theoretically and numerically.

The manuscript is organized in the following fashion:
in Section 2, we derive a generalized dielectric constant
by employing the hydrodynamic and Poisson equations
in a quantum dusty plasma. Two specific cases for the
instability due to ion-streaming and dust-streaming are
investigated. Section 3 summarizes the numerical results
and contains the conclusions.

2 Governing equations

We consider a three component quantum dusty plasma
consisting of electrons, singly ionized charged ions,

and negatively charged dust particulates. The charge-
neutrality condition at equilibrium is

∑
j qjnj0 = 0, where

qj is the charge (qe = −e for the electrons, qi = e for ions,
and qd = −Zd0e for negatively dust particulates, Zd0 is
the number of the electrons residing on the dust partic-
ulate, and e is the magnitude of the electronic charge),
and nj0 is the equilibrium number density. We look for
electrostatic perturbations and suppose that there is no
external magnetic field. The dielectric response function
in a quantum plasma is governed by the QHD model [18,
25] with streaming of plasma species: the linearized equa-
tion of continuity is

∂nj1

∂t
+ nj0

∂Uj1

∂x
+ Uj0

∂nj1

∂x
= 0, (1)

the linearized equation of motion is
(

∂Uj1

∂t
+ Uj0

∂Uj1

∂x

)

= − qj

mj

∂ϕ1

∂x
− 1

mjnj0

∂Pj

∂x

+
�

2

4m2
jnj0

∂3nj1

∂x3
, (2)

and the Poisson equation is

∂2ϕ1

∂x2
= −4π

∑

j

qjnj1, (3)

where Uj1 (Uj0) is the perturbed (unperturbed) fluid
speed, nj1 is the perturbed number density, mj is the
mass, ϕ1 is the electrostatic potential, and Pj = nj1kBTj

is the pressure representing the isothermal equation of
state. Tj is the temperature, kB is the Boltzmann con-
stant, and � is the Plank constant divided by 2π. The
present investigation is relevant to dense astrophysical
plasma [11] even though it is hot but still exists in quan-
tum state. The quantum statistical effects are not in-
cluded and play a role in the study of ordinary met-
als, metal clusters, and nanoparticles, where the electron
Fermi temperature is much higher than the room tem-
perature. Equations (1)–(3) describe the dynamics of the
quantum plasma and are obtained by solving the nonlin-
ear Schrödinger-Poisson system [22]. The third term in
the right-hand side of equation (2) represents the quan-
tum diffraction effects and its origin is due to quantum
correlation of density fluctuations [27]. We assume a plane
wave solution of the form exp (ikx − iωt) for the perturbed
quantities, where k (ω) is the wavenumber (angular wave
frequency) of propagating waves. Calculating nj1 and Uj1

from equations (1) and (2), respectively, we obtain

nj1 =
knj0

(ω − kUj0)
Uj1, (4)

and

Uj1 =
1

(ω − kUj0)

[
qj

mj
kϕ1+

kBTj

mjnj0
knj1+

�
2

4m2
jnj0

k3nj1

]

.

(5)
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Substituting equation (5) into equation (4), we have

nj1 =
knj0

(ω − kUj0)
2

[
qj

mj
kϕ1+

kBTj

mjnj0
knj1+

�
2

4m2
jnj0

k3nj1

]

,

(6)

which can be further simplified as

nj1 =
qjnj0

mj

[
k2ϕ1

(ω − kUj0)
2 − k2V 2

tj − �2k4/4m2
j

]

. (7)

From equations (3) and (7), we then obtain

1 −
∑

j=e,i,d

ω2
pj

(ω − kUj0)
2 − k2V 2

tj − �2k4/4m2
j

= 0, (8)

which is the generalized form of the dielectric response
function in a quantum dusty plasma. Here, ωpj =√

4πq2
j nj0/mj is the plasma frequency, and Vtj =

√
kBTj/mj is the thermal speed. Equation (8) can be

written in the following form

1 − ω2
pe

(ω − kUe0)
2 − Ω2

e

− ω2
pi

(ω − kUi0)
2 − Ω2

i

− ω2
pd

(ω − kUd0)
2 − Ω2

d

= 0, (9)

where Ω2
e = k2V 2

te + �
2k4/4m2

e, Ω2
i = k2V 2

ti + �
2k4/4m2

i ,
and Ω2

d = k2V 2
td +�

2k4/4m2
d. In the following subsections,

we consider two specific cases of instability due to the ion-
streaming, and the dust-streaming. We shall ignore the
quantum effects for the ions and the dust particulates due
to their large mass compared to the electrons.

2.1 Ion-streaming instability

Here, we consider the approximations |ω − kUe0| � Ωe,
|ω − kUi0| � Ωi, and ω � kUd0, Ωd, and write equa-
tion (9) as

1 +
ω2

pe

k2V 2
te + �2k4/4m2

e

− ω2
pi

(ω − kUi0)
2 − ω2

pd

ω2
= 0, (10)

equation (10) can be put in the form

1 − Ω2
IA

(ω − kUi0)
2 − Ω2

DA

ω2
= 0, (11)

where

ΩIA =ωpi

√
(k2V 2

te+�2k4/4m2
e)/(k2V 2

te+ω2
pe+�2k4/4m2

e)

and

ΩDA =ωpd

√
(k2V 2

te+�2k4/4m2
e)/(k2V 2

te+ω2
pe+�2k4/4m2

e)

are the ion-acoustic and dust-acoustic frequencies, respec-
tively. Letting ω = kUi0 + δ in equation (11), assum-
ing δ < kUi0, and kUi0 ∼ ΩDA, we obtain

δ3 =
1
2
Ω2

IAkUi0. (12)

The roots of equation (12) are

δ =
(

Ω2
IAkUi0

2

)1/3

,

(
−1 + i

√
3

2

)(
Ω2

IAkUi0

2

)1/3

,

(
−1 − i

√
3

2

)(
Ω2

IAkUi0

2

)1/3

. (13)

We express the second root of δ in terms of real and imag-
inary parts, respectively, as

ω̃r = − 1
24/3

[
K̃ ω̃2

pi(K̃
2Ṽ 2

te + K̃4H2/4)

(K̃2Ṽ 2
te + ω̃2

pe + K̃4H2/4)

]1/3

, (14)

and

ω̃i =
√

3
24/3

[
K̃ ω̃2

pi(K̃
2Ṽ 2

te + K̃4H2/4)

(K̃2Ṽ 2
te + ω̃2

pe + K̃4H2/4)

]1/3

. (15)

Here, equations (14) and (15) are normalized by the pa-
rameters: ω̃r,i = ωr,i/ωpi, ω̃pi = 1, ω̃pe = ωpe/ωpi,
K̃ = kUi0/ωpi, Ṽte = Vte/Ui0, and H = �ωpi/meU

2
i0 is

the quantum parameter representing the quantum correc-
tion due to the density fluctuations.

2.2 Dust-streaming instability

Here, we suppose that the dust grains are streaming
against the electrons and ions. Introducing the approx-
imations |ω − kUe0| � Ωe and ω � kUi0, Ωi, we then
obtain from equation (9)

1 +
ω2

pe

k2V 2
te + �2k4/4m2

e

− ω2
pi

ω2
− ω2

pd

(ω − kUd0)
2 = 0, (16)

or

1 − Ω2
IA

ω2
− Ω2

DA

(ω − kUd0)
2 = 0. (17)

Letting ω = kUd0 + ∆ in equation (17) where ∆ < kUd0,
and kUd0 ∼ ΩIA, we obtain

∆3 =
1
2
Ω2

DAkUd0. (18)

The roots of equation (18) are

∆ =
(

Ω2
DAkUd0

2

)1/3

,

(
−1 + i

√
3

2

)(
Ω2

DAkUd0

2

)1/3

,

(
−1 − i

√
3

2

) (
Ω2

DAkUd0

2

)1/3

, (19)
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Fig. 1. (Color online) The normalized growth rates and the normalized real angular frequencies (ω̃i,r = ωi,r/ωpi) are plotted
against the normalized wavenumber (K̃ = kUi0/ωpi) using equations (14) and (15) for (i) different ion-streaming speeds
Ui0 = 0.0001ωpi, thick curve; Ui0 = 0.0003ωpi, thin curve; Ui0 = 0.0006ωpi, dashed curve (top left figure), (ii) a pure classical
case (H = 0) with changing electron thermal speed Ṽte = (0.01, 0.02, 0.03) and Ui0 = 0.01ωpi (top right), (iii) a pure quantum
case (Ṽte = 0) with varying H = 0.3, 0.6, 1 and keeping Ui0 = 0.01ωpi (bottom left), and (iv) different values of H = 0.3, 0.6, 1
with fixed Ṽte = 0 and Ui0 = 0.01ωpi (bottom right). Other parameters used in our numerical calculations are: me = 9.1×10−28 g,
mi = 12mp (mp is the mass of proton), md = 4.008 × 10−16 g, ne0 ≈ ni0 = 1.0× 1019 cm−3, nd0 = 1.0× 1014 cm−3, Zd0 = 104,
and Te = 105 K.

Introducing the normalizations: ω̃r,i = ωr,i/ωpd, ω̃pd = 1,
ω̃pe = ωpe/ωpd, K̃ = kUd0/ωpd, Ṽte = Vte/Ud0, and H =
�ωpd/meU

2
d0, we obtain for the real and imaginary parts

from the second root of equation (19), respectively, as

ω̃r = − 1
24/3

[
K̃ ω̃2

pd(K̃
2Ṽ 2

te + K̃4H2/4)

(K̃2Ṽ 2
te + ω̃2

pe + K̃4H2/4)

]1/3

, (20)

and

ω̃i =
√

3
24/3

[
K̃ ω̃2

pd(K̃
2Ṽ 2

te + K̃4H2/4)

(K̃2Ṽ 2
te + ω̃2

pe + K̃4H2/4)

]1/3

. (21)

3 Numerical results and conclusions

For the numerical evaluation of the growth rates and
real angular frequencies, we choose some typical param-
eters that are representative of dense astrophysical plas-
mas [11,18,19]: me = 9.1 × 10−28 g, mi = 12mp (mp is

the mass of proton), md = 4.008 × 10−16 g, ne0 ≈ ni0 =
1.0× 1019 cm−3, nd0 = 1.0× 1014 cm−3, Te = 105 K, and
the dust charge state Zd0 = 104. Using these parameters,
we solve equations (14), (15), (20) and (21) numerically,
and examine the effects of the ion-dust-streaming speeds
(Ui0, Ud0), the thermal speed of the electrons (Vte), and
the dimensionless quantum parameter (H) on the growth
rates. The quantum effects are also observed on the pro-
files of the real angular frequency. The normalized growth
rates (ω̃i) and the normalized real angular wave frequen-
cies (ω̃r) are plotted against the normalized wavevector
K̃ for (i) different normalized ion-streaming speeds Ui0 =
(0.0001, 0.0003, 0.0006), (ii) a pure classical case (H = 0)
with Ui0 = 0.01 ωpi and Ṽte = (0.01, 0.02, 0.03), (iii) a pure
quantum case (Ṽte = 0) with changing H = (0.3, 0.6, 1)
and keeping Ui0 = 0.01ωpi, and (iv) choosing different val-
ues of H = 0.3, 0.6, 1 having Ui0 = 0.01ωpi and Ṽte = 0.
Figure 1 shows that the growth rates as well as the real
angular frequencies increase with increasing ion-streaming
speeds, the quantum parameter, and the thermal speed of
the electrons. Furthermore, Figure 2 displays the variation
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Fig. 2. (Color online) The normalized growth rates and the normalized real angular frequencies (ω̃i,r = ωi,r/ωpd) are plotted
against the normalized wavenumber (K̃ = kUd0/ωpd) using equations (20) and (21) for (i) different dust-streaming speeds
Ud0 = 0.001ωpd, thick curve; Ud0 = 0.004ωpd, thin curve; Ud0 = 0.008ωpd, dashed curve (top left figure), (ii) a pure classical
case (H = 0) with different electron thermal speed Ṽte = (17, 18, 19) and Ud0 = 0.001ωpd (top right), (iii) a pure quantum case
(Ṽte = 0) with H = 0.03, 0.06, 0.1 and fixed Ud0 = 0.14ωpd (bottom left), and (iv) different values of H = 0.03, 0.06, 0.1 having
Ṽte = 0 and Ud0 = 0.14ωpd (bottom right). All other parameters are the same as in Figure 1.

of the growth rates and the real angular frequencies due
to the dust-streaming speeds in quantum plasmas.

To conclude, we have presented a generalized dielec-
tric response function for the quantum dusty plasma by
using the QHD model, and the Poisson equation. In such
a plasma, the electron density perturbation is affected
by the quantum correction, whereas the positive ions
and negatively charged dust particulates behave classi-
cally. Two specific cases for the instability due to the ion-
streaming and the dust-streaming are presented both ana-
lytically and numerically. It is found that the growth rates
and the real angular frequencies are significantly affected
by the variation of the streaming speeds, the thermal
speeds, and the quantum effects. Finally, our results may
be useful to understand the underlying physics of dense
astrophysical quantum dusty plasmas containing ions and
dust flows.
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